
Polynomial deflation Strategy for root finders

6 March 2013 Page 1

Polynomial deflation strategy for root finders.
By Henrik Vestermark (hve@hvks.com)

Abstract:
Several root-finding methods find one or two roots at a time that in turn is deflated into
the polynomial and the process is repeated to find one or two more roots until all roots
have been found. Now technically you can use either forward deflating or backward
deflating or a hybrid composite deflation that combines the advantages of both the
forward and backward deflating techniques to preserve the accuracy of the deflated
polynomial.

Introduction:
When an iteration step has been completed e.g. a Newton iteration and a root has been
found, the root is typically deflated up into the polynomial to reduce the polynomial, and
the Newton iterating is repeated until all roots have been found. This paper describes the
two methods and in what context it is appropriate to use them in. Not unusually we are
seeking the method that preserves the accuracy of the remaining polynomial coefficients
to ensure the highest obtainable accuracy of the Newton or similar roots-finding process.

 If you have a polynomial with either real or complex coefficients

01
1

1 ...)(azazazazP n
n

n
n  



And a root R (either real or a complex number).
We are trying to find the deflated polynomial that satisfied the equation:

01
2

2
1

1

01
1

1

...)(

...)(

))(()(

bzbzbzbzQand

azazazazPwhere

RzzQzP

n
n

n
n

n
n

n
n
















Now to obtain the b’s you can either start by finding the highest coefficient bn-1 and work
your way down to b0 which is called forward deflation or the opposite find the
coefficients starting with b0 and work your way up to bn-1 which is called backward
deflation.

Forward Deflation of Polynomials:
To do forward deflation we try to solve the equations starting with the highest
coefficients an:

))(...(... 01
2

2
1

101
1

1 Rzbzbzbzbazazaza n
n

n
n

n
n

n
n  









The recurrence is given by:

Polynomial deflation Strategy for root finders

6 March 2013 Page 2

00

1

1

*

1,...,1*

bRa

nkbRba

ba

kkk

nn










Now solve it for b’s you get:

0,...,2* 11

1








nkbRab

ab

kkk

nn

This simple algorithm works well for polynomials with real coefficients and real roots
and complex coefficients with complex roots using the same recurrence just using
complex arithmetic instead. A special case is real coefficients with complex roots. A
complex root and its complex conjugated root will be the same as dividing the
polynomial P(Z) with 2nd order polynomial of the two complex conjugated roots (x+iy)
and (x-iy) or (z2-2xz+(x2+y2)). Letting r=-2x and u= x2+y2

00

101

2102

2342

231

2

01
3

3
2

2

01
1

1

2

:

...)(

...)(

))(()(

uba

ubrba

ubrbba

ubrbba

rbba

ba

bygivingisrecurrenceThe

bzbzbzbzQand

azazazazPwhere

urzzzQzP

nnnn

nnn

nn

n
n

n
n

n
n

n
n
































Now solve it for b’s you get:

0,...,4

*

212

213

2












nkubrbab

brab

ab

kkkk

nnn

nn

Backward Deflation of Polynomials:
To do backward deflation we try to solve the equations starting with the lowest
coefficient a0 and work our way up to an:

Polynomial deflation Strategy for root finders

6 March 2013 Page 3

))(...(... 01

2
2

1
101

1
1 Rzbzbzbzbazazaza n

n
n

n
n

n
n

n  








The recurrence is given by:

1

1

00

1,...1*

*










nn

kkk

ba

nkbRba

bRa

Now solve it for b’s you get:

nn

kkk

ab

nkRabb
R

a
b










1

1

0
0

2,...,1/)(

For complex conjugated roots, we again divide the quadratic factor (z2-2xz+(x2+y2)) up
in the polynomial P(z) this time starting from the back. Letting r=-2x and u= x2+y2

2

321

21

011

00

01
3

3
2

2

01
1

1

2

2,...,2

:

...)(

...)(

))(()(






























nn

nnn

kkkk

n
n

n
n

n
n

n
n

ba

brba

nkbrbuba

rbuba

uba

bygivingisrecurrenceThe

bzbzbzbzQand

azazazazPwhere

urzzzQzP

Now solve it for b’s and you get

2,...,2/)(

/)*(

/

12

011

00






 nkurbbab

ubrab

uab

kkkk

Forward or Backward Deflation?

Polynomial deflation Strategy for root finders

6 March 2013 Page 4

Wilkinson [2] has shown that to ensure a stable deflation process you should choose
forward deflation if you find the roots of the polynomial in increasing magnitude and
always deflate the polynomial with the lowest magnitude root first and of course, the
opposite backward deflation when finding the roots with decreasing magnitude.
Although most root-finding algorithms do find them in increasing order it can’t be
guaranteed and therefore to ensure the most stable deflation process you will use the
composite deflation method which is more complicated to handle than the forward or
backward deflation technique.

Composite Deflation of Polynomials:

To carry out composite deflation you calculated the new coefficients by doing forward
deflations and saving the new coefficients in an array B[]. They do backward deflations
and say the new coefficients in an array C[]. You then join the arrays B[] and C[] by
finding the coefficients index with the lowest difference in the magnitude between the
newly calculated coefficients k. You then take the forward deflation coefficients from the
B[] from n..k+1 and the backward coefficients C[] from k-1..0 and then take the average
for the coefficients k as bk= ½ (B[k]+C[k]).

We then have the algorithm as follows to calculate the new coefficients b’s:

r=+Infinity
For(i=0..n-1)
 u=|B[i]|+|C[i]|
 If(u!=0) u=|B[i]-C[i]|/u
 If(u<r) u=r, k=i
For(i=k+1..n-1) bi=B[i];
bk= ½ (B[k]+C[k])
For(i=k-1..0) bi=C[i];

Grant [1] used the above mention algorithm for composite deflation in solving
polynomial equations.

Reference

1. Grant, J A & Hitchins, G D. Two algorithms for the solution of polynomial
equations to limiting machine precision. The Computer Journal Volume 18
Number 3, pages 258-264

2. Wilkinson, J H, Rounding errors in Algebraic Processes, Prentice-Hall Inc,
Englewood Cliffs, NJ 1963

